深度技术

站内搜索
5G R17中的RedCap是什么技术?

5G R17中的RedCap是什么技术?

近期,3GPP宣布5G R17标准冻结。在R17版本中,RedCap这个“小红帽”尤为显眼,被誉为5G物联网不可或缺的一块大蛋糕。那究竟什么是RedCap?下面来聊一聊。为什么要定义RedCap?我们先来看看可穿戴设备(包括可穿戴手表、AR/VR眼镜等)、工业无线传感器、监控摄像头这三类终端对网络能力的需求:众所周知,5G eMBB支持载波带宽100MHz以上,峰值速率可达10Gbps;uRLLC支持毫秒级时延和超高可靠性;而mMTC由4G时代的NB-IoT和eMTC演进而来,主要支持带宽小于1
高级自动驾驶域控制器的功能安全设计详细分析

高级自动驾驶域控制器的功能安全设计详细分析

高级自动驾驶中央域控制器的设计过程需要充分掌握其中的安全设计原则,因为前期设计中,无论是架构、软件、硬件还是通信都是需要充分掌握其设计规则才能充分发挥出相应的优势,同时规避掉一定的设计问题的。这里我们讲的高阶域控制器功能安全设计主要是指包含前端研发中预期功能安全所涉及的场景分析和后端功能安全所涉及的所有子项。首先以硬件基础层面为连接基点,通过数据通信端实现整个系统架构通信、数据流传输,软件则是烧录到硬件上,以硬件为载体,通信单元负责相互之间的模块调用。因此对于域控制器的安全设计端来说。从整车安全
谈谈智能座舱操作系统

谈谈智能座舱操作系统

随着智能座舱领域以及驾驶辅助功能的不断升级,必然伴随传感器数量的提高、芯片算力要求的提高,基于软件定义汽车的共识,芯片、操作系统、中间件、应用算法软件、数据是实现智能座舱的关键因素。对汽车的架构及座舱的实现方式进行梳理,同时结合一汽红旗H9、E-HS9 车型的实践,对汽车座舱操作系统的现状和趋势进行分析,探讨在新一轮科技和产业发展中的应对战略。1 前言当前随着硬件、软件技术的不断创新发展,智能座舱从以功能需求出发,向“客户体验”为核心的理念不断演变,整体表现为更加安全、智能和舒适。主要体现为以下
详解汽车SOA主要功能模块及开发流程

详解汽车SOA主要功能模块及开发流程

1 前言近年来,汽车“新四化”(智能化、网联化、电动化、共享化)的快速推进,给汽车行业带来了新的技术变革,汽车的功能变得越来越复杂,尤其是智能座舱、智能驾驶、智能底盘的出现,促使汽车电子电气架构也相应地发生变革。随着汽车智能化发展、汽车功能的增加,汽车上的电子控制单元(Electronic Control Unit,ECU)也越来越多,每个ECU的信号都必须在设计时进行静态规划和路由,为了应对这种增长带来的挑战,汽车行业正在采用1种新的架构,即面向服务的体系架构(Service-Oriented
入门 | 一文带你了解SOA接口测试

入门 | 一文带你了解SOA接口测试

了解汽车电子行业的人,近几年可能经常见到一个词“SOA”,那SOA具体是什么?作为测试人员应该要测试哪些内容呢?这篇文章就简单给大家介绍一下。01 SOA是什么?SOA(Service Oriented Architecture)是一种面向服务的架构,最早应用于IT行业,虽然行业内对于SOA的定义没有一个统一的描述,但是总体而言,SOA把功能定义成为服务,服务带有明确的可调用接口,并可以通过网络调用。在汽车领域,对于高性能计算平台而言,为了实现域控制器以及区域控制器之间的互联互通和软硬分离、缩短
从几个典型层面讲解下一代自动驾驶电子电器架构局限

从几个典型层面讲解下一代自动驾驶电子电器架构局限

自动驾驶在新一代EE架构中趋向于从分布式向集中式演进,在此过程中,整车需求包括机械、电气/电子、软件、热学等。工程师需要从中提取电气/电子方面需求,并且对其进行分解然后协调各下游部门进行开发设计。在整个过程中,涉及电子电气架构的定义、设计和交付的各种工程师必须平衡相互依赖的需求。从传统架构到智能电气架构,也会面临类似的问题——传统电气架构全部都是机械和电气范畴内的,在OEM那里是属于电气部门的,和电子不搭界,但升级到智能电气架构后,全电子化了。因此可以说,传统电气架构的可靠性下限比较高,但上限很
硬件敏捷怎么玩?

硬件敏捷怎么玩?

常常被问到,硬件的敏捷怎么做?2年前我就非常关注这个跨界融合的话题,所以在不同场合发表过自己的观点。前不久,被一个车企客户软件负责人再一次问到了,于是那场访谈变成我说得多、对方聆听的模式(汗!)。所以我想,还是,写一段文字吧,一来算是把观点系统性总结一下;二来也算是抛砖引玉,在更大范围和读者朋友一起做个交流探讨。首先申明,这个话题非常大,我的背景局限了我的经验和知识面,一定是挂一漏万,事先给读者打声招呼,读者群体可能分两大类:一类读者是熟悉敏捷的软件背景人士:建议对本文抱着开放心态来阅读,想一下
如何对SOA架构进行软硬件解耦部署

如何对SOA架构进行软硬件解耦部署

对于下一代集中式电子电器架构而言,采用central+zonal 中央计算单元与区域控制器布局已经成为各主机厂或者tier1玩家的必争选项,关于中央计算单元的架构方式,有三种方式:分离SOC、硬件隔离、软件虚拟化。集中式中央计算单元将整合自动驾驶,智能座舱和车辆控制三大域的核心业务功能,标准化的区域控制器主要有三个职责:电力分配、数据服务、区域网关。因此,中央计算单元将会集成一个高吞吐量的以太网交换机。 随着整车集成化的程度越来越高,越来越多ECU的功能将会慢慢的被吸收到区域控制器当中。而平台
AUTOSAR中的功能安全—— 硬件诊断

AUTOSAR中的功能安全—— 硬件诊断

为实现功能安全应用的现代微控制器是非常复杂的设备,为了保证安全系统中,微控制器可以作为其中的一部分并且达到设计的安全等级,需要在硬件与软件中完成必要的功能安全机制与措施,完成必要的集成工作。 微控制器必须支持安全系统的前提假设——提供的功能是可信的,这个可以通过执行硬件诊断机制来支持。本节主要介绍AUTOSAR中硬件诊断是如何被支持的。 Core Test 总体目标是为了检测处理单元可能的故障而导致的不正确的执行结果,Core Test执行的控制单元软件的测试运
解析智能座舱的关键技术

解析智能座舱的关键技术

1 引言 近年来,随着智能技术的应用和发展, 汽车座舱的功能、交互方式、操作方便性发生了显著变化,由原先交互方式以机械按钮为主、功能简单的电子座舱向注重多维交互、充满黑科技的智能座舱转变。智能座舱逐渐被应用于量产汽车之中,正发展为涉及汽车多种电子部件的复杂系统,包含手势识别、全液晶仪表盘、抬头显示系统、流媒体后视镜等新兴产品及技术。 2 智能座舱的关键技术 智能座舱是由不同的座舱电子组成的完整体系,其关键技术主要由四部分组成。 第一部分是机械技术,包括可变化车体技术和内饰机构技术。未来汽
各整车厂及方案供应商的自动驾驶系统策略分析

各整车厂及方案供应商的自动驾驶系统策略分析

1 引言 专栏之前的文章介绍了基于各种相机,激光雷达和毫米波雷达的环境感知算法,以及多传感器融合的算法。为了将理论和实际相结合,我们有必要也来了解一下在自动驾驶行业里各家公司都采用什么样的感知方案。 自动驾驶公司大致可以分为两类。一类是主机厂,包括传统的车企以及所谓的造车新势力。前者以燃油车为主,比如奔驰,宝马,通用等,后者主打新能源汽车,比如特斯拉,以及国内的“蔚小理”。另外一类是方案供应商,包括汽车行业传统的Tier1和一些高科技公司。前者主要为主机厂提供一体化的
SOTA技术概述

SOTA技术概述

对于整车OTA类型,主要分为两类,FOTA(Firmware-over-the-air)和SOTA(Software-over-the-air),两者均为主机厂重点关注及逐步落地的领域,可适应不同场景的OTA需求。 FOTA和SOTA概述 FOTA通过给车辆控制器下载安装完整的固件镜像,来实现系统功能完整的升级更新。例如升级车辆的智驾系统,让驾驶员享受越来越多的辅助驾驶功能;升级车辆的座舱系统,提高驾驶员疲劳检测的准确率;升级车辆的制动系统,提升车辆的制动性能。特斯拉曾在Model 3在上市
加载更多